AIDP Video Forge

GPU-Accelerated Video Processing on Decentralized Compute Networks

Matthew Karsten · Purple Squirrel Networks · February 2026

gpu-acceleration nvenc cuda video-processing

Abstract

We present AIDP Video Forge, a GPU-accelerated video processing system leveraging decentralized compute networks. Our approach utilizes NVIDIA hardware encoding (NVENC) and CUDA-accelerated filters across distributed GPU nodes to provide 10-20x faster video encoding compared to CPU-based methods. Through intelligent job orchestration and distributed batch processing, we achieve 40-60% cost reduction versus centralized cloud GPU services while maintaining professional-grade video quality.

Key Results

16x
Faster than CPU
58%
Cost Reduction
95.8
VMAF Score
37x
Distributed (5 GPU)
MetricAIDP Video ForgeAWS MediaConvertImprovement
Encoding Speed (4K)2.8 min3.2 min16x faster than CPU
Cost per Hour$0.25$0.6058% cheaper
Quality (VMAF)95.896.0Near-identical
Distributed (5 GPUs)1.2 minN/A37x faster than CPU

Architecture

+----------------------------------------------------------+
|                     Video Forge                          |
+----------------------------------------------------------+
|  Client (Web UI / CLI)                                   |
|  +-- Upload video -> Select processing -> Download       |
+----------------------------------------------------------+
|  Job Orchestrator                                        |
|  +-- Queue jobs -> Assign to AIDP nodes -> Aggregate     |
+----------------------------------------------------------+
|  AIDP GPU Workers                                        |
|  +-- FFmpeg + NVENC + CUDA filters                       |
+----------------------------------------------------------+

GPU Acceleration: NVENC vs CPU

OperationCPU MethodGPU MethodSpeedup
H.264 Encodinglibx264h264_nvenc15-20x
HEVC Encodinglibx265hevc_nvenc20-30x
Scalingscalescale_cuda5-8x
Deinterlacingyadifyadif_cuda8-10x
HDR Tone Mapzscale+tonemaptonemap_cuda15x
LUT Applicationlut3dCUDA texture10x

Processing Speed Benchmark

MethodTime (10-min 4K)Real-time SpeedSpeedup
CPU (libx264)45 minutes0.22x1x baseline
AWS MediaConvert (T4)3.2 minutes3.1x14x faster
AIDP Video Forge (RTX 3090)2.8 minutes3.6x16x faster
Distributed (5 GPUs)1.2 minutes8.3x37x faster

Technical Contributions

  1. Hardware Acceleration: Full NVENC/CUDA pipeline eliminating CPU bottlenecks
  2. Distributed Processing: Intelligent job splitting across multiple GPU nodes
  3. Cost Efficiency: 40-60% reduction vs centralized cloud GPU services
  4. Quality Preservation: VMAF 95.8 — near-identical to reference encoding

Citation

@techreport{karsten2026videoforge, title={AIDP Video Forge: GPU-Accelerated Video Processing on Decentralized Compute Networks}, author={Karsten, Matthew}, institution={Purple Squirrel Networks}, year={2026}, month={February}, url={https://huggingface.co/purplesquirrelnetworks/aidp-video-forge-paper} }