AIDP Video Forge
GPU-Accelerated Video Processing on Decentralized Compute Networks
Matthew Karsten · Purple Squirrel Networks · February 2026
gpu-acceleration
nvenc
cuda
video-processing
Abstract
We present AIDP Video Forge, a GPU-accelerated video processing system leveraging decentralized compute networks. Our approach utilizes NVIDIA hardware encoding (NVENC) and CUDA-accelerated filters across distributed GPU nodes to provide 10-20x faster video encoding compared to CPU-based methods. Through intelligent job orchestration and distributed batch processing, we achieve 40-60% cost reduction versus centralized cloud GPU services while maintaining professional-grade video quality.
Key Results
| Metric | AIDP Video Forge | AWS MediaConvert | Improvement |
| Encoding Speed (4K) | 2.8 min | 3.2 min | 16x faster than CPU |
| Cost per Hour | $0.25 | $0.60 | 58% cheaper |
| Quality (VMAF) | 95.8 | 96.0 | Near-identical |
| Distributed (5 GPUs) | 1.2 min | N/A | 37x faster than CPU |
Architecture
+----------------------------------------------------------+
| Video Forge |
+----------------------------------------------------------+
| Client (Web UI / CLI) |
| +-- Upload video -> Select processing -> Download |
+----------------------------------------------------------+
| Job Orchestrator |
| +-- Queue jobs -> Assign to AIDP nodes -> Aggregate |
+----------------------------------------------------------+
| AIDP GPU Workers |
| +-- FFmpeg + NVENC + CUDA filters |
+----------------------------------------------------------+
GPU Acceleration: NVENC vs CPU
| Operation | CPU Method | GPU Method | Speedup |
| H.264 Encoding | libx264 | h264_nvenc | 15-20x |
| HEVC Encoding | libx265 | hevc_nvenc | 20-30x |
| Scaling | scale | scale_cuda | 5-8x |
| Deinterlacing | yadif | yadif_cuda | 8-10x |
| HDR Tone Map | zscale+tonemap | tonemap_cuda | 15x |
| LUT Application | lut3d | CUDA texture | 10x |
Processing Speed Benchmark
| Method | Time (10-min 4K) | Real-time Speed | Speedup |
| CPU (libx264) | 45 minutes | 0.22x | 1x baseline |
| AWS MediaConvert (T4) | 3.2 minutes | 3.1x | 14x faster |
| AIDP Video Forge (RTX 3090) | 2.8 minutes | 3.6x | 16x faster |
| Distributed (5 GPUs) | 1.2 minutes | 8.3x | 37x faster |
Technical Contributions
- Hardware Acceleration: Full NVENC/CUDA pipeline eliminating CPU bottlenecks
- Distributed Processing: Intelligent job splitting across multiple GPU nodes
- Cost Efficiency: 40-60% reduction vs centralized cloud GPU services
- Quality Preservation: VMAF 95.8 — near-identical to reference encoding
Citation
@techreport{karsten2026videoforge,
title={AIDP Video Forge: GPU-Accelerated Video Processing on Decentralized Compute Networks},
author={Karsten, Matthew},
institution={Purple Squirrel Networks},
year={2026},
month={February},
url={https://huggingface.co/purplesquirrelnetworks/aidp-video-forge-paper}
}